Refine Your Search

Topic

Author

Search Results

Technical Paper

Non-Linear Dynamic Analysis of a SuperPlug™ Door Module Response to a Door Slam Event

1999-03-01
1999-01-0406
The SuperPlug™ door module is a new Delphi innovation. It is a one-piece composite structure, which integrates several door components into one assembly. This reduces the total part count, simplifies the vehicle level assembly process, and reduces labor cost (see the Appendix). The door slam durability test is an important factor in door module design. As more hardware is integrated into the SuperPlug, this subsystem performance in a door slam test becomes important. Therefore, the correct placement of components and the supporting structure is critical. Currently, the evaluation of door slam durability for the SuperPlug is a process of build then test. This is time consuming and costly due to a long testing lead-time and the expense of tooling a new mold. It was realized that a numerical process for assessing the effect of door slam would be required. This process would compute the dynamic response using finite element analysis (FEA).
Technical Paper

Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking

1999-03-01
1999-01-0483
Long repetitive braking, such as one which occurs during a mountain descent, will result in a brake fluid temperature rise and may cause brake fluid vaporization. This may be a concern particularly for passenger cars equipped with aluminum calipers and with a limited air flow to the wheel brake systems. This paper describes the computer modeling techniques to predict the brake fluid temperature rise as well as other brake component temperatures during braking and heat soaking. Numerical results are compared to the measured vehicle data and the effects of relevant brake system parameters on the fluid temperature are investigated. The techniques developed in this study will help brake engineers to build a safer brake system and reduce the extensive vehicle tests currently required.
Technical Paper

Cancellation of Unknown Angular Rate Effects in Linear G Sensitivity Testing for Angular Rate Sensors

2000-03-06
2000-01-0056
A method of canceling unknown angular rate effects in impact immunity measurement for angular rate sensors is presented. A pair of the same type of testing sensors is arranged such that the sensing axes of the sensor pair are 180° out of phase. While an angular rate produces anti-phase component in the sensor outputs, a linear acceleration produces in-phase response from the sensors due to similar mechanical symmetry. This phase difference is used to cancel the angular rate component even though the actual angular rate may still be unknown. This cancellation can be derived from the sensor output transfer function and is supported with our experimental data.
Technical Paper

Environmentally Conscious Manufacturing of TPO Instrument Panel Skins

2000-03-06
2000-01-0023
Thermoplastic polyolefin (TPO) instrument panel skins are in demand in Europe and Asia as a solution to final product disposition environmental concerns. In North America TPO is valued for its durability characteristics (particularly heat and UV aging) and capability for deployment of seamless airbags at cold temperatures. Desiring to have an environmentally “green” system to create the “green” product, Delphi designed a manufacturing process with in-plant closed loop recycling of 100% offal directly back into the skin and the use of waterbased coating system for combating concerns with solvents. Delphi's development of recyclable TPO skin for instrument panels was introduced on 1997 production of Mercedes-Benz M-class. The paper will describe how the systems approach was used in overcoming the challenges involved in closed loop recycling of engineered offal during sheet manufacturing and thermoforming processes and the implementation of waterbased primer and topcoat systems.
Technical Paper

All Olefinic Interiors-What Will It Take To Happen?

2000-03-06
2000-01-0632
TPO is getting wider acceptance for automotive applications. An exterior application like a fascia is a very good example. Interiors are still a challenge due to many reasons including overall system cost. For interior applications, “all-olefin” means it mainly consists of three materials: TPO skin, cross-linked olefinic-based foam and PP substrate. The driving force for TPO in Europe is mainly recyclability while in the USA, it is long-term durability. This paper describes the key limitations of the current TPO systems which are: poor grain retention of TPO skin, shrinkage in-consistency of the skin, high cost of priming (or other treatments) and painting of the skin, lower process window of the semi-crystalline TPO material during thermoforming or In-mold lamination / Low pressure molding, high cost of the foam, low tear strength of the foam for deep draw ratio etc.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
Technical Paper

Advanced Canister Purge Algorithm with a Virtual [HC] sensor

2000-03-06
2000-01-0557
Both evaporative emissions and tailpipe emissions have been reduced by more than 90% from uncontrolled levels in state-of-the-art. However, now that the objective is to reach near-zero emission levels, the need for aggressive purging of the canister and fuel tank and the need for extremely precise control of engine Air/Fuel ratio (A/F) come into conflict. On-board diagnostics and the wide variation in operating conditions and fuel properties in the “real world” add to the challenge of resolving these conflicting requirements. An advanced canister purge algorithm has been developed which substantially eliminates the effect of canister purge on A/F control by estimating and compensating for the fuel and air introduced by the purge system. This paper describes the objectives and function of this algorithm and the validation of its performance.
Technical Paper

Flawless Manufacturing of RACam through XCP Protocol

2016-04-05
2016-01-0047
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
Technical Paper

Synchronous Channel Fuel Pump

2015-04-14
2015-01-1270
In the current state of the art automotive fuel pumps there is only one channel on each side of the impeller. For high flow and pressure applications the size of such pumps becomes excessive. In order to reduce the size to a manageable level it may be necessary to have two or more channels on each side. But the problem with a multichannel pump is that the peak efficiency of each channel happens at a different operating point and the overall pump efficiency may not be that good. This problem can be overcome by synchronizing the channels. In a synchronous pump the channel diameter and cross sectional area of channels are such that the peak efficiency happens at the same operating point and the overall pump efficiency is improved. In this paper we derive the governing equations for flow, pressure and efficiency and layout a methodology for synchronizing the channels.
Technical Paper

Electronic Suspension System Control Utilizing ABS System Wheel Speed Sensors

1999-12-01
1999-01-3079
This paper describes a semi-active damping control system that responds in real-time to road and driving conditions based on body motions as determined through ABS wheel speed sensors. The use of these existing sensors for vehicle information eliminates the need for the additional sensors (e.g. accelerometers and body-to-wheel position/velocity sensors) that are commonly part of semi-active suspension systems. This technology also allows for further cost and part count reductions through the combination of the suspension and brake controls into a single electronic control unit. This paper has been previously presented in 1998 at the SAE Controlled Suspension System Toptec.
Technical Paper

Development of a Non-Thermal Plasma Reactor Electrical Model for Optimum NOx Removal Performance

2000-10-16
2000-01-2893
A double dielectric barrier discharge reactor driven by an alternating voltage is a relatively simple approach to promote oxidation of NO to NO2 for subsequent reduction in a catalyst bed. The chemical performance of such a non-thermal plasma reactor is determined by its current and electric field behavior in the gap, and by the fraction of the current carried by electrons, because the key reactants which initiate the NO oxidation and accompanying chemical changes are produced there, mostly by electron impact. We have tried to determine by models and experiments the bounds on performance of double dielectric barrier reactors and guidelines for optimization. Models reported here predict chemical results from time-resolved applied voltage and series sense capacitor data.
Journal Article

Solder Void Modeling and Its Influence on Thermal Characteristics of MOSFETs in Automotive Electronics Module

2017-03-28
2017-01-0011
Current generation automobiles are controlled by electronic modules for performing various functions. These electronic modules have numerous semiconductor devices mounted on printed circuit boards. Solders are generally used as thermal interface material between surface mount devices and printed circuit boards (PCB) for efficient heat transfer. In the manufacturing stage, voids are formed in solders during reflow process due to outgassing phenomenon. The presence of these voids in solder for power packages with exposed pads impedes heat flow and can increase the device temperature. Therefore it is imperative to understand the effect of solder voids on thermal characteristics of semiconductor devices. But the solder void pattern will vary drastically during mass manufacturing. Replicating the exact solder void pattern and doing detail simulation to predict the device temperature for each manufactured module is not practical.
Technical Paper

Full Hybrid Electrical Vehicle Battery Pack System Design, CFD Simulation and Testing

2010-04-12
2010-01-1080
CFD analysis was performed using the FLUENT software to design the thermal system for a hybrid vehicle battery pack. The battery pack contained multiple modular battery elements, called bricks, and the inlet and outlet bus bars that electrically connected the bricks into a series string. The simulated thermal system was comprised of the vehicle cabin, seat cavity, inlet plenum, battery pack, a downstream centrifugal fan, and the vehicle trunk. The fan was modeled using a multiple reference frame approach. A full system analysis was done for airflow and thermal performance optimization to ensure the most uniform cell temperatures under all operating conditions. The mesh for the full system was about 13 million cells run on a 6-node HP cluster. A baseline design was first analyzed for fluid-thermal performance. Subsequently, multiple design iterations were run to create uniform airflow among all the individual bricks while minimizing parasitic pressure drop.
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper

Fast Start-Up On-Board Gasoline Reformer for Near Zero Emissions in Spark-Ignition Engines

2002-03-04
2002-01-1011
This paper describes recent progress in our program to develop a gasoline-fueled vehicle with an on-board reformer to provide near-zero tailpipe emissions. An on-board reformer converts gasoline (or another hydrocarbon-containing fuel) into reformate, containing hydrogen (H2) and carbon monoxide (CO). Reformate has very wide combustion limits to enable SI engine operation under very dilute conditions (either ultra-lean or with heavy exhaust gas recirculation (EGR) concentrations). In previous publications, we have presented engine dynamometer results showing very low emissions with bottled reformate. This paper shows results from an engine linked to an experimental, fast start-up reformer. We present both performance data for the reformer as well as engine emissions and performance results. Program results continue to show an on-board reforming system to be an attractive option for providing near-zero tailpipe emissions to meet low emission standards.
Technical Paper

Development of a Controlled Braking Strategy For Vehicle Adaptive Cruise Control

2000-03-06
2000-01-0109
Adaptive Cruise Control (ACC) technology is presently on the horizon as a convenience function intended to reduce driver workload. This paper presents an implementation of a brake algorithm, which extends the production cruise control feature. A brief overview of the system architecture and subsystem interfaces to the forward-obstacle detection system, throttle and engine management controls are described. Considerations of moding ACC with ABS and Traction Control are presented at the vehicle level. This development activity is presented in two major phases. Both phases of this development project utilize CAN controllers and transceivers to implement requirements for limited access highway driving. The initial phase of development requires the brake control to follow a deceleration command and operate “open-loop” to the vehicle controller. Vehicle test data capturing smooth stops on high coefficient surfaces is presented as insight to the braking performance of the vehicle.
X